STEAM INJECTION

Humidifiers

Installation, Operation, and Maintenance Manual

For use with steam boilers
ATTENTION INSTALLER
Read this manual before installing. Leave manual with product owner.

Where to find more information
On our website:
The following related documents can be viewed, printed, or ordered from our website, www.dristeem.com

In Dri-calc®
Dri-calc is DriSteem’s free sizing and selection software for calculating load, determining non-wetting distance, and selecting equipment. See Dri-calc on the www.dristeem.com Tools page. Also in Dri-calc:
A comprehensive library of Installation Guide documents, including:
• Recommended placement within a duct or air handler
• Recommended sensor placement

Or call us at 800-328-4447
Obtaining documents from our website or from Dri-calc is the quickest way to view our literature, or we will be happy to mail literature to you.

STEAM INJECTION INSTALLATION, OPERATION, AND MAINTENANCE MANUAL

Safety precautions

⚠️ WARNING
Indicates a hazardous situation that could result in death or serious injury if instructions are not followed.

⚠️ WARNING
Attention installer
Read this manual before installing, and leave this manual with product owner. This product must be installed by qualified HVAC and electrical contractors and in compliance with local, state, federal, and governing codes. Improper installation can cause property damage, severe personal injury, or death as a result of electric shock, burns, or fire.
DriSteem® technical support: 800-328-4447

Read all warnings and instructions
Read this manual before performing service or maintenance procedures on any part of the system. Failure to follow all warnings and instructions could produce the hazardous situations described, resulting in property damage, personal injury, or death.

Failure to follow the instructions in this manual can cause moisture to accumulate, which can cause bacteria and mold growth or dripping water into building spaces. Dripping water can cause property damage; bacteria and mold growth can cause illness.

Hot surfaces and hot water
Steam Injection humidifiers have extremely hot surfaces. Water in steam pipes and dispersion assemblies can be as hot as 212 °F (100 °C). Discharged steam is not visible. Contact with hot surfaces, discharged hot water, or air into which steam has been discharged can cause severe personal injury. To avoid severe burns, allow the system to cool before performing service or maintenance procedures on any part of the system.
## Table of contents

### OVERVIEW
- Introduction .................................................. 2
- Available models ............................................ 3
- Basic components ............................................ 4
- Principle of operation ....................................... 5
- Humidifier placement ........................................ 6
- Sensor placement ............................................. 9
- Pressurized steam piping guidelines ....................... 10
- Condensate drain piping and trapping ..................... 14
- Temperature switches ........................................ 16

### SINGLE-TUBE HUMIDIFIER
- Configurations ................................................. 20
- Assembly ......................................................... 21
- Installation ..................................................... 22
- Piping notes .................................................... 23
- Field piping ................................................... 24

### MULTIPLE-TUBE HUMIDIFIER
- Field assembly ................................................ 28
- Installation ..................................................... 29
- Piping notes .................................................... 30
- Field piping ................................................... 31

### MAXI-BANK HUMIDIFIER
- Maxi-bank option field assembly and installation ........ 36
- Maxi-bank option piping notes .............................. 39
- Maxi-bank option field piping .............................. 40
- Assembly and installation .................................... 45

### MINI-BANK HUMIDIFIER
- Field piping ................................................... 45

### AREA-TYPE HUMIDIFIER
- Installation ..................................................... 48
- Field piping ................................................... 49
- Rise, spread, and throw dimensions ....................... 50
- Humidifier start-up and shut-down ......................... 51

### OPERATION
- Eliminating excess heat from steam jacketed humidifiers 51

### MAINTENANCE
- Maintenance procedures ..................................... 54
- Troubleshooting ............................................... 55

### TROUBLESHOOTING ........................................... 55

### REPLACEMENT PARTS
- Single-tube and Multiple-tube humidifiers ................ 58
- Area-type humidifier ......................................... 60
- Mini-bank humidifier ......................................... 61

### WARRANTY ...................................................... 62
Introduction

SUITEABLE FOR A WIDE RANGE OF APPLICATIONS
Steam Injection humidifiers from DriSteem® use steam from an external source, such as an in-house boiler or a district steam system. DriSteem’s Steam Injection humidifiers are adaptable to virtually any size application, and a wide variety of models accommodate a broad range of steam absorption requirements.

STEAM JACKETED DISPERSION TUBE MODELS FOR DUCTS AND AIR HANDLERS
Single-tube, Mini-bank®, and Multiple-tube humidifiers are designed for ducts and air handlers, and capable of a wide range of guaranteed non-wetting distances.

AREA-TYPE FOR OPEN SPACES
Area-type™ Steam Injection humidifiers are designed for open spaces such as warehouses and manufacturing spaces that do not have a duct system. The steam discharged from the humidifier is quietly dispersed by a fan without introducing water droplets into the air.

Each Single-tube, Mini-bank®, and Multiple-tube humidifier has the same basic components: a stainless steel separator, a steam valve, and one or more jacketed dispersion tubes.

For open spaces, boiler steam can be dispersed by the fan of an Area-type model.
Available models

**FIGURE 3-1: STEAM INJECTION HUMIDIFIER MODELS**

**SINGLE-TUBE HUMIDIFIER**
- Suitable for small- to medium-capacity systems, 1.5 – 525 lbs/hr (0.7 – 238 kg/h)
- Moderate to long non-wetting distance
- Pre-assembled separator/tube assembly

**MINI-BANK HUMIDIFIER**
- Suitable for small-capacity systems, 1.6 – 84 lbs/hr (0.7 – 38 kg/h)
- Short to moderate non-wetting distance
- Sized for small ducts
- Pre-engineered and pre-assembled header/tube assembly, ready for mounting and hookup

**MULTIPLE-TUBE HUMIDIFIER**
- Suitable for small- to large-capacity systems, 6.5 – 3989 lbs/hr (2.3 – 1809 kg/h)
- Sizes to fit small ducts and large air handlers
- Short to moderate non-wetting distance
- Field assembled (with interconnecting piping and header supplied by contractor)
- Maxi-bank™ option:
  - Pre-assembled, except when either dimension is 98 inches (2490 mm) or more
  - Includes 304 stainless steel header, with option for 316 stainless steel
  - Includes black iron piping, with options for 304 or 316 stainless steel

**AREA-TYPE HUMIDIFIER**
- Suitable for medium-capacity systems, 1.8 – 286 lbs/hr (0.8 – 130 kg/h)
- Used in open spaces
- Application-dependent non-wetting distances

All Steam Injection humidifiers shown here, except Area-type, are available with options for applications requiring stainless steel steam components.
Basic components

FIGURE 4-1: STEAM INJECTION HUMIDIFIER COMPONENTS

1. **Steam jacket**
   A chamber that jackets the inner dispersion tube with hot steam to eliminate condensation and dripping.

2. **Steam separator**
   Separates steam from condensate.

3. **Deflector plate**
   Inside the steam separator, deflects condensate into a circular pattern and toward the drain.

4. **Multi-baffle plate**
   Allows only steam to rise into the upper region of the separator.

5. **Internal drying tube**
   Excludes any remaining condensate, allowing only dry steam to leave the separator.

6. **Steam valve**
   Controls the amount of steam allowed into the dispersion tube.

7. **Dispersion tube**
   Provides uniform steam dispersion across the duct width.

8. **Thermal-resin tubelet**
   Unique tubelets extend into the dispersion tube center so only the hottest, driest steam is discharged into the air. These tubelets also have an exceptional ability to trap noise generated by the valve, making DriSteem’s Steam Injection humidifiers the quietest in the industry.

9. **Steam trap**
   Allows only condensate to pass to the condensate return system.

See Figure 5-1 for a description of how these components operate together.
Principle of operation

1. Boiler steam enters the humidifier at line pressure and flows through a chamber (jacket) surrounding an inner dispersion tube. The jacket of steam preheats the dispersion tube so that when steam enters the dispersion tube (at Step 5 below) it does not condense as it would if the tube were cold, thereby eliminating condensation and dripping.

2. After flowing through the steam jacket, steam with entrained condensate slows from entering the larger space of the separator and from hitting the perimeter deflector plate, and begins to spin and separate.

3. Separated steam rises through slots in the multi-baffle plate to the separator upper region, and enters the internal drying tube that excludes any remaining condensate, allowing only dry steam to leave the separator.

4. Separated condensate drains from the separator to the steam trap.

5. The steam valve controls the amount of steam allowed into the preheated dispersion tube. The steam valve is typically controlled in one of two ways:
   - By a signal from a building automation system
   - By a humidity controller connected to the steam valve

6. Steam is discharged uniformly through the tubelets into the airstream.

FIGURE 5-1: STEAM INJECTION HUMIDIFIER PRINCIPLE OF OPERATION

About right-hand and left-hand discharge:
Imagine you are standing in the duct where the Steam Injection humidifier is to be installed, with airflow blowing into your face:

- Specify the humidifier with right-hand discharge if the separator is on your right.
- Specify the humidifier with left-hand discharge if the separator is on your left.

For consistency, humidifier drawings in this catalog are shown with right-hand discharge.
Humidifier placement

USE THESE EXAMPLES AS GUIDELINES
Proper humidifier placement is crucial for successful system operation. Usually, there is no single correct placement for a humidifier. Much depends on system design and application. The following paragraphs and dispersion assembly placement examples are presented as guidelines for common situations.

FIRST, CHECK AVAILABLE ABSORPTION DISTANCE
Available absorption distance affects system choice. Dispersed steam must be absorbed into the airflow before it comes in contact with any duct elbows, fans, vanes, filters, or any object that can cause condensation and dripping.

PLACING A STEAM INJECTION HUMIDIFIER IN AN AHU (SEE FIGURE 6-1)
• Location A is the best choice. Installing downstream from heating and cooling coils provides laminar flow through the dispersion unit; plus, the heated air provides an environment for best absorption. Use a multiple tube dispersion unit to ensure complete absorption of steam vapor before fan entry.

• Location B is the second-best choice. In change-over periods, the cooling coil will eliminate some moisture for humidification.

• Location C is the third-best choice. Air leaving a fan is usually very turbulent and may cause vapor to not absorb at the expected absorption distance. Allow for more absorption distance if installing downstream from a fan.

• Location D is the poorest choice. The cooler air at this location requires an increased absorption distance.

Figure 6-1: Placing a Steam Injection humidifier in an air handling unit (AHU)
Humidifier placement

**PLACING A STEAM INJECTION HUMIDIFIER NEAR AN ELBOW (SEE FIGURE 7-1)**

- Location A is the best choice. Better absorption occurs on the downstream side of an elbow than on the upstream side.

- Location B is the second-best choice. Installing upstream from an elbow can cause wetting at the turning vanes. In cases where it is structurally impossible to avoid Location B, use a multiple tube humidifier to ensure complete absorption. Also, since more air flows along the outside of a turn, better absorption occurs if the humidifier discharges proportionately more steam in that part of the airstream.

- At both locations, discharging steam against or perpendicular to the airstream gives slightly better mixing and absorption than discharging with the airstream.

**FIGURE 7-1: PLACING A STEAM INJECTION HUMIDIFIER ASSEMBLY NEAR AN ELBOW**
Humidifier placement

PLACING A STEAM INJECTION HUMIDIFIER IN A PRIMARY/SECONDARY SYSTEM
(SEE FIGURE 8-1)
This type of system is commonly applied to facilities where most of the building requires one humidity level (typically to meet comfort requirements) and part of the building requires additional humidity. In Figure 8-1, the primary humidification system is within the main air handling unit. The secondary humidification system is located close to the point of steam discharge into the secondary area.

FIGURE 8-1: PLACING A STEAM INJECTION HUMIDIFIER IN A PRIMARY/SECONDARY SYSTEM

Filter mixing box
Before humidifier:
50 °F (10 °C), 47% RH
Primary humidifier location
After humidifier:
50 °F (10 °C), 60% RH

Outside air
Exhaust air

70 °F (21 °C), 30% RH
Primary area:
70 °F (21 °C), 30% RH

Secondary humidifier location
50 °F (10 °C) 60% RH
VAV box

Secondary humidified area

Room transmitter: 65 °F (18 °C), 50% RH

50 °F (10 °C), 60% RH
Sensor placement

SENSOR LOCATION IS CRITICAL
Sensor location has a significant impact on humidifier performance. See the recommendations below and Figure 9-1.

Note: DriSteem recommends that you do not interchange room and duct humidity devices. Room humidity devices are calibrated with zero or little airflow, whereas duct humidity devices require air passing across them.

Recommended humidity control (transmitter/humidistat) locations:

A Ideal. Ensures the best uniform mix of dry and moist air with stable temperature control.

B Acceptable, but room environment can affect controllability, such as when sensor is too close to air grilles, registers, or heat radiation from room lighting.

C Acceptable. Provides uniform mixture of dry and moist air. If extended time lag exists between humidity generation and sensing, extend sampling time.

D Acceptable (behind wall or partition) for sampling entire room if sensor is near an air exhaust return outlet. Typical placement for sampling a critical area.

E Not acceptable. These locations might not represent actual overall conditions in the space.

F Not acceptable. Do not place sensors near windows, door passageways, or areas of stagnant airflow.

Recommended safety (airflow and high limit) sensor location:

G Best sensing location for high limit humidistat or humidity sensor and airflow proving switch.

Other factors affecting humidity control
Humidity control involves more than the controller’s ability to control the system. Other factors that play an important role in overall system control are:

- Size of humidification system relative to load
- Overall system dynamics associated with moisture migration time lags
- Accuracy of humidistats and humidity transmitters and their location
- Dry bulb temperature accuracy in space or duct
- Velocities and airflow patterns in ducts and space environments
- Electrical noise or interference

SENSOR LOCATION IS CRITICAL
Sensor location has a significant impact on humidifier performance. See the recommendations below and Figure 9-1.

Note: DriSteem recommends that you do not interchange room and duct humidity devices. Room humidity devices are calibrated with zero or little airflow, whereas duct humidity devices require air passing across them.

Recommended humidity control (transmitter/humidistat) locations:

A Ideal. Ensures the best uniform mix of dry and moist air with stable temperature control.

B Acceptable, but room environment can affect controllability, such as when sensor is too close to air grilles, registers, or heat radiation from room lighting.

C Acceptable. Provides uniform mixture of dry and moist air. If extended time lag exists between humidity generation and sensing, extend sampling time.

D Acceptable (behind wall or partition) for sampling entire room if sensor is near an air exhaust return outlet. Typical placement for sampling a critical area.

E Not acceptable. These locations might not represent actual overall conditions in the space.

F Not acceptable. Do not place sensors near windows, door passageways, or areas of stagnant airflow.

Recommended safety (airflow and high limit) sensor location:

G Best sensing location for high limit humidistat or humidity sensor and airflow proving switch.

FIGURE 9-1: RECOMMENDED SENSOR LOCATIONS
Pressurized steam piping guidelines

- Size piping in accordance with ASHRAE recommendations.

- Humidifier’s steam supply should be taken off top of steam main (not side or bottom) to ensure the driest steam. Main should be dripped and trapped (in accordance with ASHRAE recommendations).

- Humidifier steam trap(s) must drain by gravity to return main having little or no back pressure. If condensate cannot drain by gravity, then it must be elevated to return main (see Figure 12-1 for instructions).

- If steam pressure is less than or equal to 15 psi (103.4 kPa), use float and thermostatic (F&T) traps for the humidifier.

  If steam pressure is greater than 15 psi (103.4 kPa), use inverted bucket traps for the humidifier.

- If lifting condensate, use an inverted bucket trap and check valve regardless of steam pressure. See Figure 12-1 for instructions.

- Condensate from unavoidable heat loss in the distribution system must be removed promptly to eliminate water hammer and degradation of steam quality and heat transfer capability. Install drip legs at all low points and natural drainage points in the system, such as at ends of mains; bottoms of risers; and ahead of pressure regulators, control valves, isolation valves, pipe bends, and expansion joints.

  On straight, horizontal runs with no natural drainage points, space drip legs at the following intervals:
  
  - Not exceeding 300' (91 m) when the pipe is pitched down in the direction of the steam flow
  
  - At a maximum of 150' (46 m) when the pipe is pitched up, so that condensate flow is opposite of steam flow.

  These distances apply to systems where valves are opened manually to remove air and excess condensate that forms during warm-up conditions. Reduce these distances by about half in systems that are warmed up automatically.

- Insulate piping well to avoid unnecessary heat loss.

- Pitch return lines downward in the direction of the condensate flow at 1/2" per 10' (0.4%).
Pressurized steam piping guidelines

**FIGURE 11-1: FIELD PIPING OVERVIEW**

- Take off branch lines from the top of the steam main, preferably at a 45° angle, although vertical 90° connections are acceptable.
- Insulate piping.
- Automatic warm-up: 28" (711 mm) min.
- Supervised warm-up: 1.5 x pipe diameter, 8" (203 mm) min.
- If pipe is 4" (DN100) or larger, size drip for 50% of the condensate load at start-up. If pipe is less than 4" (DN100), size drip for 25% of the condensate load at start-up.
- Branch trap recommended if distance from main to humidifier is greater than 10' (3.3 m).
- Branch steam trap by installer.
- Condensate return.
- Blowdown valve by installer.
- End of main steam trap by installer.
- Condensate return.
- Blowdown valve by installer.
- Pitch main 1/4" per 10' (0.2%).
- Pitch humidifier branch 1/2" per 10' (0.4%) if distance from main to humidifier is less than 10' (3.3 m).
- Piping same size as humidifier inlet strainer.
- Insulate piping.
- 12" (305 mm) min.
- 4" (100 mm) min.
- To humidifier. Inlet strainer must be within 3' (1 m) of humidifier.
- Humidifier isolation valve.
- Branch trap.
- Condensate return.
- Blowdown valve by installer.
- Pressurized steam piping guidelines.
In certain installations, it is not possible to drain the humidifier steam trap by gravity. The condensate must be lifted. Generally, lifting condensate is not recommended, but it can be done successfully by observing the following rules:

- **Steam pressure.** Theoretically, one pound (6.9 kPa) of steam pressure will lift condensate about 2' (0.6 m). But in practice, because of pipe friction, pressure drop through a steam trap, and back pressure in a return line, we recommend maximum lift of 6" per pound (0.2 m per 6.9 kPa) of steam pressure at the trap. For example, a steam pressure of 5 psi (34.5 kPa) will provide a maximum lift of 2.5' (0.76 m). Lifting condensate more than 5' (1.5 m) should not be attempted.
- **Steam trap.** When lifting condensate, use an inverted bucket steam trap. Float and thermostatic (F&T) traps are more prone to water hammer damage with a flooded trap, which may occur when lifting condensate.
- **Pipe size.** The size of the vertical portion of the piping should be 1/2" pipe thread (DN15).
- **Check valve** (swing type). A low-pressure differential swing check valve should be installed adjacent to the trap. This will prevent backflow of condensate into the humidifier during periods of little or no steam pressure. Failure to do so could result in accumulated backflow discharging from the humidifier when steam pressure is resumed. Spring-type check valves are not recommended, as they can reduce pressure available for condensate lifts.

**Condensate lifting recommendations:**
1. Condensate can be lifted for all steam jacket piping.
2. Condensate could be lifted for connection to separator, but performance could vary based on variable pressure at the separator.
3. Condensate cannot be lifted for connection on headers for Multiple-tube humidifiers (including Maxi-bank option).
Pressurized steam piping guidelines

**FIGURE 13-1: MULTIPLE VALVE PLUMBING GUIDELINES**

Notes:
1. Dashed lines indicate provided by installer.
2. Steam valve and strainer sizes are provided by DriCalc, DriSteem’s free sizing and selection software, available at www.dristeem.com.
OVERVIEW

Condensate drain piping and trapping

FIGURE 14-1: CONDENSATE DRAIN PIPING AND TRAPS FOR STEAM INJECTION HUMIDIFIERS

P-trap dimensions

Condensate outlet

Drop

Seal

Lifting condensate

From P-trap or mechanical trap

Condensate pump*

Mechanical trap dimensions

Typical model

Condensate outlet

Drop

Drip

F&T trap (shown) or inverted bucket trap

Stainless steel components model

Condensate outlet

Stainless steel
thermostatic trap

Drip

Cooling leg

Notes:
* Use condensate pump rated for 212 °F (100 °C) and suitable for lifting 250 gph (16 L/m) at required head (60 kPa). Stainless steel condensate pump recommended when pumping condensate from systems using optional stainless steel components.
• If wasting condensate to drain, temper condensate to local code to prevent damage to drain plumbing.
• Dashed lines indicate provided by installer.
## Table 15-1: Condensate drain piping and traps for Steam Injection humidifiers

<table>
<thead>
<tr>
<th>Area-type humidifier</th>
<th>Piping from separator***</th>
<th>Piping from steam jackets</th>
<th>Piping from header</th>
<th>Piping from separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical model</td>
<td>Models with optional stainless steel components</td>
<td>Typical model</td>
<td>Models with optional stainless steel components</td>
<td>Models with optional stainless steel components</td>
</tr>
<tr>
<td>P-trap water seal</td>
<td>Do not use</td>
<td>Do not use</td>
<td>Do not use</td>
<td>Do not use</td>
</tr>
<tr>
<td>F&amp;T trap</td>
<td>Use if steam pressure is ≤15 psi (103.4 kPa): Drop: 12&quot; (305 mm) Drip: 4&quot; (102 mm)</td>
<td>Do not use</td>
<td>Use only if not lifting condensate and steam pressure is ≤15 psi (103.4 kPa): Drop: 12&quot; (305 mm) Drip: 4&quot; (102 mm)</td>
<td>Do not use</td>
</tr>
<tr>
<td>Inverted bucket trap*</td>
<td>Use if steam pressure is &gt;15 psi (103.4 kPa): Drop: 12&quot; (305 mm) Drip: 4&quot; (102 mm)</td>
<td>Do not use</td>
<td>Use if lifting condensate or if steam pressure is &gt;15 psi (103.4 kPa): Drop: 12&quot; (305 mm) Drip: 4&quot; (102 mm)</td>
<td>Do not use</td>
</tr>
<tr>
<td>Stainless steel thermostatic trap</td>
<td>Do not use</td>
<td>Use with stainless steel piping with minimum: Drip: 4&quot; (102 mm) Cooling leg: 24&quot; (610 mm)</td>
<td>Do not use</td>
<td>Use with stainless steel piping with minimum: Drip: 4&quot; (102 mm) Cooling leg: 24&quot; (610 mm)</td>
</tr>
</tbody>
</table>

### Notes:
- *Trap may require priming after seasonal shutdown.
- **DriSteem recommends using a stainless steel condensate pump when pumping condensate from systems using optional stainless steel components.
- ***During consistent load, there may not be enough steam pressure in the separator to lift condensate from the separator using steam.
- †If wasting condensate to drain, temper condensate to local code to prevent damage to drain plumbing.

---

**Table 15-1:** Condensate drain piping and traps for Steam Injection humidifiers.
Temperature switches

**FIGURE 16-1: PNEUMATIC TEMPERATURE SWITCH STANDARD LOCATION**

- Set point controlling humidistat
- Pneumatic airflow switch (optional)
- Duct high limit humidistat (optional)
- Separator
- 12" (305 mm) min.
- Pneumatic temperature switch
- Steam trap

**FIGURE 16-2: PNEUMATIC TEMPERATURE SWITCH ALTERNATE LOCATION**

- 12" (305 mm) min.
- Pneumatic temperature switch
- Steam trap
Temperature switches

**PNEUMATIC TEMPERATURE SWITCH NOTES:**
- DriSteem’s pneumatic temperature switch, designed for use with a pneumatic control system, prevents condensate discharge from a steam injection humidifier during cold start or if the condensate return main becomes flooded. It accomplishes this by bleeding off the pneumatic signal from the controlling humidistat, preventing the pneumatic humidifier valve from opening until the steam trap has reached operating temperature.

- The pneumatic temperature switch has a self-contained air valve operated by a thermal disc that is normally open, bleeding off control air pressure. When steam comes in contact with the thermal disc, the fluid inside the disc expands, causing the air valve to close, thus allowing the pneumatic control system air pressure to build up and to actuate the steam control valve.

- Install the tee containing the pneumatic temperature switch in the condensate drainage pipe line between the separator and the inlet to the steam trap, as shown in the drawings on Pages 16 and 18.
Temperature switches

FIGURE 18-1: ELECTRIC MODULATING TEMPERATURE SWITCH LOCATION

- Duct high limit humidistat (optional)
- Airflow proving switch (optional)
- Electric temperature switch
- Steam trap
- Class 2 transformer (by installer) used with 24 VAC coil
  Omit transformer when using 120 VAC coil
- Normally closed electric modulating valve (120 VAC or 24 VAC)
- Electric modulating humidistat (optional) or control signal by others
Temperature switches

Electric temperature switches:

- The electric temperature switch prevents condensate discharge from a steam injection humidifier during a cold start or if the condensate return main becomes flooded. DriSteem's electric temperature switch is a temperature-actuated make-break switch designed for use with electric humidity control systems. The temperature at which it switches is adjustable and should be set at 210 °F (99 °C).

- This switch prevents condensate discharge from a steam injection humidifier during a cold start or if the condensate return main becomes flooded.

- Install the sensing element of the device in the condensate return piping on the inlet side of the steam trap (see drawings), including a tee with a ½" pipe thread (DN15) opening to receive the sensing element. When steam surrounds the sensing element, the switch will “make,” allowing the humidifier valve to open.

- Install all wiring according to national and local electrical codes, and SIZE TRANSFORMER VA TO LOAD VA.

- When using the temperature switch with an electric modulating valve, use the special wiring instructions furnished with the valve.
Configurations

**Figure 20-1: Single-Tube Humidifier Installation Configurations**

- **Horizontal Tube/Horizontal Airflow**
  - Typical configuration. Single-tube humidifiers are shipped this way unless ordered otherwise. See Page 24 for more information about this configuration. This is a right-hand configuration; to change to a left hand configuration, see Figure 20-1.

- **Vertical Tube/Horizontal Airflow**
  - Use this configuration when there is no access to side of duct or when duct is tall and narrow, to improve steam absorption. See Page 27 for more information about this configuration.

- **Horizontal Tube/Vertical Airflow**
  - Use this configuration in vertical airflow ducts. See Page 26 for more information about this configuration.

- **Horizontal Separator/Horizontal Airflow**
  - Use this configuration when space is tight, such as when installing above ceilings. This application requires a separator designed for horizontal installation. See Page 25 for more information about this configuration.

- **Horizontal Separator/Vertical Airflow**
  - Use this configuration in vertical airflow ducts and when space is tight, such as when installing above ceilings. This application requires a separator designed for horizontal installation.

---

**Figure 20-2: Changing From Right-Hand to Left-Hand Configuration**

It may be necessary to change the steam discharge direction at the job site. To do so, follow these directions:

1. Non-threaded union ring.
2. Remove elbow and nipple assembly from dispersion tube and reinstall on opposite connection.
3. Rotate dispersion tube 180° with respect to separator.
4. Reconnect union halves and tighten union ring.
5. Humidifier now will discharge to opposite side.
Assembly

FIGURE 21-1: SINGLE-TUBE HUMIDIFIER FIELD ASSEMBLY

**SINGLE-TUBE HUMIDIFIER FIELD ASSEMBLY**

Small units are shipped assembled; the following applies to larger units that are disassembled for shipment.

1. Unpack shipment and verify receipt of all components with packing list. Report any shortages at once.

2. Match up dispersion tube with its proper valve-separator assembly (tubes and separators are match-tagged).
   Tubelets should point against the airflow for better steam-air mixing, except if tubes have fiberglass insulated-jacket option, then tubelets should discharge steam with the airflow to prevent condensation from forming on cool jackets.
   See the installation examples on the following pages before beginning assembly.
   **Note**: Before completing Step 3, determine which way (right or left) tubelets should point, and install in appropriate half coupling (see Figure 4-1).

3. Unscrew pipe union, remove elbow and nipple portion, and install in half coupling of tube.

4. Install tube adapter in valve (use pipe dope) and tighten.

5. Lubricate O-rings and install inside tube adapter.

6. Insert tube adapter into dispersion tube. As this is being done, if unit has a silencer, squeeze hooks of silencer cage together and slide them into the tube adapter, allowing them to snap over rear edge of adapter. Complete inserting adapter into tube, being careful not to damage O-rings.
   **Note**: Unless special-ordered, silencers are furnished only with Model 60 and Model 70 tubes equal to or shorter than 48" (1219 mm), and only with black iron piping.

7. Tighten pipe union.

8. Thread Teflon seal ring into half coupling.

9. Torque Teflon seal ring to 15 ft-lbs (20.3 N-m).
   **Note**: Once tightened, do not attempt to re-tighten the Teflon seal, or the seal could be damaged.

10. Install the assembly in the duct. See “Installation” on the next page.
Installation

1. Insert a support bolt in one of the support bracket’s three holes (upper, lower or end); cut holes in duct for inserting dispersion tube and support bolt.

2. Secure unit in duct with nut and support bolt. Mount two-piece escutcheon plate around tube and secure into duct with sheet metal screws. Where an airtight seal is required, use a suitable caulk around duct wall penetrations.

3. Install steam strainer and steam trap. Connect to steam and condensate return mains. See the drawings on the following pages and text below for detailed piping instructions.

4. Install control tubing (pneumatic) or wiring (electric) to valve actuator.

5. Install an airflow proving switch to prevent the valve from opening unless air is moving in duct. See “Humidifier placement” on Pages 6–8 for location recommendations.

6. Install a duct-mounted high-limit humidistat downstream from the humidifier. Set humidistat at 80-90% RH to prevent condensation forming in duct. Mount this humidistat far enough downstream to ensure that injected steam has been completely absorbed before the humidistat. See “Humidifier placement” on Pages 6–8 for location recommendations.

7. Install a temperature switch to prevent possible cold-start dripping when steam pressure to the humidifier is cycled. See “Temperature switches” on Pages 16–19 for more information.

8. Install the humidistat and/or sensors according to the recommendations on Page 9.

For more installation information
- See “Humidifier placement” on Pages 6–8 for information about choosing an installation location.
- See “Pressurized steam piping guidelines” on Pages 10–13.
- See “Temperature switches” on Pages 16–19.

**WARNING**

**Improper mounting hazard**
Mount humidifier per the instructions in this manual and to a structurally stable surface. Improper humidifier mounting can cause the humidifier to fall resulting in severe personal injury or death.

**WARNING**

**Excessive moisture hazard**
DriSteem strongly recommends installing a duct airflow proving switch and a duct high limit humidistat. These devices prevent a humidifier from making steam when there is low airflow in the duct or when the RH level in the duct is too high. Failure to install these devices can result in excessive moisture in the duct, which can cause bacteria and mold growth or dripping through the duct.
Piping notes

1. Refer to field piping drawings on Pages 24–27.
2. To avoid metal fatigue, allow for thermal expansion of dispersion tube.
3. Dashed lines in drawings indicate provided by installer.

**Horizontal airflow:**
Slightly better mixing with less visible vapor travel occurs when discharged steam blows against the airflow, rather than with the airflow. Therefore, when using noninsulated steam jackets in a horizontal airflow (as shown in the piping drawings on Pages 24–27), position tubelets (steam orifices) so they face into the airflow. However, if the dispersion tube has an insulated jacket, the discharged steam must blow with the airflow to avoid condensation that may occur when discharged steam contacts the cooler insulated jacket. When using insulated steam jackets in a horizontal airflow, position tubelets so they discharge steam with the airflow, and add 24" (610 mm) to the non-wetting distance.

4. **Vertical airflow:**
   - Always position tubelets (steam orifices) pointing up when installing in a vertical airflow.
   - Important: If installing insulated steam jackets in a vertical airflow, install only in an upflow application and add 24" (610 mm) to the non-wetting absorption distance. **Do not install insulated steam jackets in a vertical downflow application.**

5. For horizontal tube installations, center tube within duct height. For vertical tube installations, center tube within duct width.

6. If steam pressure is less than or equal to 15 psi (103.4 kPa), use a float and thermostatic (F&T) trap for the humidifier. If steam pressure is greater than 15 psi (103.4 kPa), use an inverted bucket trap for the humidifier. If lifting condensate, use an inverted bucket trap and check valve regardless of steam pressure (see Figure 12-1).

7. See also the “Pressurized steam piping guidelines” on Pages 10–13.
Field piping

NOTES:
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Piping notes” on Page 23, and see Pages 14 and 15 for more information about trap types and trap piping.
Field piping

**NOTES:**

1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Piping notes” on Page 23, and see Pages 14 and 15 for more information about trap types and trap piping.
Field piping

FIGURE 26-1: HORIZONTAL DISPERSION TUBE INSTALLED IN A VERTICAL AIRFLOW

NOTES:
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Piping notes” on Page 23, and see Pages 14 and 15 for more information about trap types and trap piping.
Field piping

FIGURE 27-1: VERTICAL DISPERSION TUBE INSTALLED IN A HORIZONTAL AIRFLOW

NOTES:
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Piping notes” on Page 23, and see Pages 14 and 15 for more information about trap types and trap piping.
Field assembly

**Note:** For Maxi-bank option, follow the “Maxi-bank option field assembly and installation” instructions on Page 36.

1. Unpack shipment and verify receipt of all components with packing list. Report any shortages at once.
2. Plan the tube bank. You need to know the required spacing distance between tubes. See Table 29-1. Arrange tubes so steam will discharge against the airflow, unless tubes are insulated (optional), in which case they should blow with the air to prevent condensation on metal jacket covering insulation.
3. Assemble header based on spacings determined in Step 2 above. If header pipe size has not been specified, see Table 28-1. This table is based on a maximum steam velocity of 7,000 to 10,000 fpm (36 to 51 m/s), which will result in lower noise levels and produce uniform steam flow from all tubes. If noise level is not important or a uniform flow is not critical, a smaller header size may be used.
4. Install tube adapter fittings in header tees. (See Figure 28-1.) It usually works best to lay the header on the floor along with the tubes for Steps 5–7.
5. Install male pipe thread end of tube adapter into pipe fitting. Dope threads and tighten leak tight sealer.
6. O-rings are installed inside of tube adapter.
   **NOTE:** Use synthetic oil to lubricate O-rings before installing.
7. Insert tube adapter into dispersion tube. As this is being done, if unit has a silencer, squeeze hooks of silencer cage together and slide them into tube adapter, allowing them to snap over rear edge of adapter. Complete inserting adapter into tube, being careful not to damage O-rings.
   **NOTE:** Unless special-ordered, silencers are furnished only with Model 60 and Model 70 tubes equal to or shorter than 48" (1219 mm), and only with black iron piping.
8. Slide tube into adapter being careful not to damage O-rings.
9. Install tubes in adapter fittings, making sure tubelets are pointing in proper direction.
10. Cut to length, thread, and install steam jacket piping.
    **NOTE:** When the total tube length of dispersion tubes exceeds 45' (13.7 m), we recommend installing an additional steam inlet to the dispersion tubes and an additional steam jacket trap. One for each additional 45' of total tube length. Divide the tubes into equal groups. See Figures 32-1 and 35-1.
11. Make tube support strut using angle or channel iron, and bolt each tube end in place.

### Table 28-1: Multiple-tube humidifier header sizes

<table>
<thead>
<tr>
<th>Total capacity</th>
<th>Header size</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs/hr</td>
<td>kg/h</td>
</tr>
<tr>
<td>up to 280</td>
<td>up to 127</td>
</tr>
<tr>
<td>up to 490</td>
<td>up to 222</td>
</tr>
<tr>
<td>491 to 980</td>
<td>223 to 444</td>
</tr>
<tr>
<td>981 to 1743</td>
<td>445 to 790</td>
</tr>
<tr>
<td>1744 to 2752</td>
<td>791 to 1248</td>
</tr>
<tr>
<td>2753 to 3989</td>
<td>1249 to 1809</td>
</tr>
</tbody>
</table>

* Non Maxi-bank only
Installation

NOTE: For Maxi-bank option, follow the “Maxi-bank option field assembly and installation” instructions on Page 36.

1. Insert a support bolt in one of the three holes (upper, lower or end) of the support brackets; cut holes in duct for inserting dispersion tube and support bolt.

2. Secure unit in duct with nuts and support bolts. Mount two-piece escutcheon plate around each tube and secure into duct with sheet metal screws. Where an airtight seal is required, use a suitable caulk around duct wall penetrations.

3. Install steam strainer and steam trap. Connect to steam and condensate return mains. See the drawings on the following pages and text on the next for detailed piping instructions.

4. Install control tubing (pneumatic) or wiring (electric) to valve actuator.

5. Install an airflow proving switch to prevent the valve from opening unless air is moving in duct. See “Humidifier placement” on Pages 6–8 for location recommendations.

6. Install a duct-mounted high-limit humidistat downstream from the humidifier. Set humidistat at 80-90% RH to prevent condensation forming in duct. Mount this humidistat far enough downstream to ensure that injected steam has been completely absorbed before the humidistat. See “Humidifier placement” on Pages 6–8 for location recommendations.

7. Install a temperature switch to prevent possible cold-start dripping when steam pressure to the humidifier is cycled. See “Temperature switches” on Pages 16–19 for more information.

8. Install the humidistat and/or sensors according to the recommendations on Page 9.

Table 29-1:
Multiple-tube humidifier minimum tube spacing

<table>
<thead>
<tr>
<th>Tube model</th>
<th>Minimum tube spacing (X*) Multi-tube humidifier</th>
<th>Minimum tube spacing (X*) Multi-tube humidifier with optional stainless steel piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inches</td>
<td>mm</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>152</td>
</tr>
<tr>
<td>70</td>
<td>9</td>
<td>229</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>229</td>
</tr>
</tbody>
</table>

* See Multiple-tube humidifier drawings on the following pages for center-to-center distance X.
Piping notes

NOTE: For Maxi-bank option, see the “Maxi-bank option piping notes” on Page 36.

1. Refer to piping drawings on Pages 31 through 35.
2. See also the “Pressurized steam piping guidelines” on Pages 10 through 13.
3. Slightly better mixing with less visible vapor travel occurs when discharged steam blows against the airflow, rather than with the airflow. Therefore, when using noninsulated steam jackets in a horizontal airflow (as shown in the drawings), position dispersion tubelets (steam orifices) so that they face into the airflow. If the dispersion tube has an insulated jacket, the discharged steam must blow with the airflow to avoid condensation that may occur when discharged steam contacts the cooler insulated jacket. Therefore, when using insulated steam jackets in a horizontal airflow, position dispersion tubelets so that they discharge steam with the airflow, and also add 24" (610 mm) to the non-wetting absorption distance.

4. Jacket piping size:
   - 1/2" pipe thread (DN15) for Model 60 tubes
   - 3/4" pipe thread (DN20) for Model 70 tubes
   - 1½" pipe thread (DN40) for Model 80 tubes

5. To ensure uniform output from each tube, connect steam supply as close to the middle of the header as possible, but not in direct alignment with a dispersion tube.

6. See header sizing in Table 28-1.

7. After the unit is installed, secure steam jacket piping to the tube header.

8. If steam pressure is less than or equal to 15 psi (103.4 kPa), use float and thermostatic (F&T) traps for the humidifier. If steam pressure is greater than 15 psi (103.4 kPa), use inverted bucket traps for the humidifier. If lifting condensate, use an inverted bucket trap and check valve regardless of steam pressure (Figure 12-1).

9. Due to the pressure drop across the valve, the steam pressure at the header trap is minimal; therefore, you cannot lift condensate or return condensate to a pressurized return by steam pressure from this trap. However, with condensate free steam, no trap is required if load is less than 500 pph, and between 500 and 1000 pph a trap is optional. Above 1000 pph, a trap is recommended.

10. X = distance between tubes, center to center
    Y = clearance at top and bottom = at least 1/2 of X or 4½" (114 mm), whichever is greater, but not greater than X
    See the minimum tube spacing in Table 29-1.

11. When installing in a vertical airflow:
    Always point tubelets (steam orifices) up when installing in a vertical airflow.

Important: If installing insulated steam jackets in a vertical airflow, install only in an upflow application and add 24" (610 mm) to the non-wetting absorption distance. Do not install insulated steam jackets in a vertical downflow application.
Field piping

**FIGURE 31-1: MULTIPLE-TUBE HUMIDIFIER, TOTAL TUBE LENGTH LESS THAN OR EQUAL TO 45' (13.7 M)**

Notes:
1. To avoid metal fatigue, allow for thermal expansion of dispersion tubes.
2. Dashed lines indicate provided by installer (see Maxi-bank option beginning on Page 36). Right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
Field piping

FIGURE 32-1: MULTIPLE-TUBE HUMIDIFIER, TOTAL TUBE GREATER THAN 45' (13.7 M)

NOTES:
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer (see Maxi-bank option beginning on Page 36). Right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Piping notes” on Page 30, and see Pages 14 and 15 for more information about trap types and trap piping.
Field piping

FIGURE 33-1: MULTIPLE-TUBE HUMIDIFIER INSTALLED IN A VERTICAL AIRFLOW

Notes:
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer (see Maxi-bank option beginning on Page 36). Right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Piping notes” on Page 30, and see Pages 14 and 15 for more information about trap types and trap piping.
Field piping

**FIGURE 34-1: MULTIPLE-TUBE HUMIDIFIER WITH TOTAL TUBE LENGTH LESS THAN OR EQUAL TO 45' (13.7 M) IN A AHU**

- **NOTES:**
  1. To avoid metal fatigue, allow for thermal expansion of dispersion tubes.
  2. Dashed lines indicate provided by installer (see Maxi-bank option beginning on Page 36). Right-hand discharge shown.
  4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
  5. See Pages 14 and 15 for more information about trap types and piping.
Field piping

FIGURE 35-1: MULTIPLE-TUBE HUMIDIFIER WITH TOTAL TUBE LENGTH GREATER THAN 45' (13.7 M) IN A AHU

NOTES:
1. To avoid metal fatigue, allow for thermal expansion of dispersion tubes.
2. Dashed lines indicate provided by installer (see Maxi-bank option beginning on Page 36). Right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See Pages 14 and 15 for more information about trap types and piping.
Maxi-bank option field assembly and installation

The Maxi-bank humidifier’s header piping and steam-jacket piping are provided by DriSteem. The Maxi-bank is factory assembled and shipped intact, except for larger units that are broken down for shipment. If the unit you are installing is already assembled, skip installation steps that do not apply.

1. Unpack shipment and verify receipt of all Maxi-bank components with packing list. Report any shortages at once.

2. To simplify installation, we recommend that dispersion tubes be attached to the Maxi-bank header before dispersion tubes and header are installed in a duct or air handler.

3. Follow the pre-tagged component lettering and match up dispersion tubes (or tube sections) to their proper location on the Maxi-bank header.

4. Install each dispersion tube into its appropriate tube adapter on the header, being sure to lubricate O-rings in the tube adapters.

5. Proceed with the additional tubes. Bring the jacketed union halves together and secure unions by hand. **NOTE:** When the total tube length of dispersion tubes exceeds 45' (13.7 m), we recommend installing an additional steam inlet to the dispersion tubes and an additional steam jacket trap. One for each additional 45' of total tube length. Divide the tubes into equal groups. See Figures 41-1 and 43-1.

6. When all the dispersion tubes are assembled, place the tube assembly into the duct or air handler, securing the assembly and tube ends to the duct or a fabricated structure. Install tubes level.

7. Position and secure header, then tighten interconnecting tube jacket unions. When installing into a duct, use the two-piece escutcheon plates around each tube and secure to duct with sheet metal screws. In duct applications where air tightness is required, seal around tube and bolts with suitable caulk.

---

### For more installation information

- See “Humidifier placement” on Pages 6–8 for information about choosing an installation location.
- See “Pressurized steam piping guidelines” on Pages 10–13.
- See “Temperature switches” on Pages 16–19.

### WARNING

**Improper mounting hazard**

Mount humidifier per the instructions in this manual and to a structurally stable surface. Improper humidifier mounting can cause the humidifier to fall resulting in severe personal injury or death.

---

**Excessive moisture hazard**

DriSteem strongly recommends installing a duct airflow proving switch and a duct high limit humidistat. These devices prevent a humidifier from making steam when there is low airflow in the duct or when the RH level in the duct is too high. Failure to install these devices can result in excessive moisture in the duct, which can cause bacteria and mold growth or dripping through the duct.
Maxi-bank option field assembly and installation

8. Locate and install separator/valve assembly to Maxi-bank mating union on header and tighten union.

9. Install strainer and necessary steam traps. Connect assembly to steam and condensate mains.

10. Install control tubing (pneumatic) or wiring (electric) to valve actuator.

11. Install an airflow proving switch to prevent the valve from opening unless air is moving in duct. See “Humidifier placement” on Pages 6–8 for location recommendations.

12. Install a duct-mounted high-limit humidistat downstream from the humidifier. Set humidistat at 80-90% RH to prevent condensation forming in the duct. Mount this humidistat far enough downstream to ensure that injected steam has been completely absorbed before the humidistat. See “Humidifier placement” on Pages 6–8 for location recommendations.

13. Install a temperature switch to prevent possible cold-start dripping when steam pressure to the humidifier is cycled. See “Temperature switches” on Pages 16–19 for more information.

14. Install the humidistat and/or sensors according to the recommendations on Page 9.

15. Pressure test system, and secure fittings as necessary.
Maxi-bank option piping notes

1. Refer to piping drawings on Pages 40–44.
2. Dashed lines in drawings indicate provided by installer.
3. For total dispersion tube lengths of more than 45' (13.7 m), see Step 5 note Page 36.
4. When installing in a horizontal airflow:
   Slightly better mixing with less visible vapor travel occurs when discharged steam blows against the airflow, rather than with the airflow. Therefore, when using noninsulated steam jackets in a horizontal airflow (as shown in the drawings on Pages 40–43), position dispersion tubelets (steam orifices) so that they face into the airflow. If the dispersion tube has an insulated jacket, the discharged steam must blow with the airflow to avoid condensation that may occur when discharged steam contacts the cooler insulated jacket. Therefore, when using insulated steam jackets in a horizontal airflow, position dispersion tubelets so that they discharge steam with the airflow, and also add 24" (610 mm) to the non-wetting absorption distance.
5. When installing in a vertical airflow:
   Always point tubelets (steam orifices) up with vertical airflow.
   Important: If installing insulated steam jackets in a vertical airflow, install only in an upflow application and add 24" (610 mm) to the non-wetting absorption distance. Do not install insulated steam jackets in a vertical downflow application.
6. Jacket piping size:
   - 1/2" pipe thread (DN15) for Model 60 tube(s)
   - 3/4" pipe thread (DN20) for Model 70 tube(s)
   - 1 1/2" pipe thread (DN40) for Model 80 tube(s)
7. After the unit is installed, secure steam jacket piping to the tube header.
Maxi-bank option piping notes

8. If steam pressure is less than or equal to 15 psi (103.4 kPa), use float and thermostatic (F&T) traps for the humidifier. If steam pressure is greater than 15 psi (103.4 kPa), use inverted bucket traps for the humidifier. If lifting condensate, use an inverted bucket trap and check valve regardless of steam pressure (see Figure 12-1).

9. The header trap is required to collect condensate from the header assembly. Due to the pressure drop across the valve, the steam pressure at the header trap is minimal; therefore, you cannot lift condensate by steam pressure, or return condensate to a pressurized return, from this trap. On small headers (2" or less in diameter), this trap may be omitted.

10. X = distance between tubes, center to center
    Y = clearance at top and bottom = at least ½ X or 4½" (114.3 mm), whichever is greater, but not greater than X
    See the “Minimum tube spacing distance” table on Page 38.


12. Drawings represent right-hand discharge.

13. See Table 28-1 for header sizing.
Maxi-bank option field piping

**FIGURE 40-1: MAXI-BANK OPTION, TOTAL TUBE LENGTH LESS THAN OR EQUAL TO 45' (13.7 M)**

**NOTES:**
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Maxi-bank option piping notes” on Pages 38 and 39, and see Pages 14 and 15 for more information about trap types and trap piping.
Maxi-bank option field piping

**FIGURE 41-1: MAXI-BANK OPTION, TOTAL TUBE LENGTH GREATER THAN 45' (13.7 M)**

- **Isolation valve (by others)**
- **From steam source**
- **Same size as separator inlet**
- **Factory-supplied header and interconnecting piping**
- **See Table 28-1**
- **See Note 7 on Page 38**
- **Steam valve and actuator (see Note 4)**
- **Separator**
- **3/4" pipe thread (DN20)**
- **12" (305 mm) min.**
- **Trap (See Note 8 on Page 39)**
- **4" (100 mm) min.**
- **Header trap by installer (see Note 9 on Page 39)**
- **Steam jacket trap (see Note 8 on Page 39)**
- **Install strainer within 3' (1 m) of humidifier (see Note 4)**
- **Mounting bracket**
- **Securing and seal escutcheon plates**
- **Steam jacket piping (Note 6 on Page 38)**
- **Level**
- **Dispersion tubes (see Note 4 on Page 38)**
- **Second inlet**
- **Secure end of tube to duct using support bracket (0.421" dia. [11 mm] holes in top, bottom, and end of bracket)**
- **Steam jacket trap (see Note 8 on Page 39)**

**NOTES:**

1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Maxi-bank option piping notes” on Pages 38 and 39, and see Pages 14 and 15 for more information about trap types and trap piping.
Maxi-bank option field piping

**FIGURE 42-1: MAXI-BANK OPTION, TOTAL TUBE LENGTH LESS THAN OR EQUAL TO 45' (13.7 M) IN AN AHU**

- **NOTES:**
  1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
  2. Dashed lines indicate provided by installer; right-hand discharge shown.
  4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
  5. See “Maxi-bank option piping notes” on Pages 38 and 39, and see Pages 14 and 15 for more information about trap types and trap piping.
Maxi-bank option field piping

**FIGURE 43-1: MAXI-BANK OPTION, TOTAL TUBE LENGTH GREATER THAN 45' (13.7 M) IN AN AHU**

**NOTES:**

1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Maxi-bank option piping notes” on Pages 38 and 39, and see Pages 14 and 15 for more information about trap types and trap piping.
Maxi-bank option field piping

FIGURE 44-1: MAXI-BANK OPTION INSTALLED IN A DUCT VERTICAL AIRFLOW

See Table 29-1 for minimum tube spacing [x]. See Note 10 on Page 39.

\[ y = 4\frac{1}{2}" (114 \text{ mm}) \text{ min.} \]
Center assembly in duct. See Note 10 on Page 39.

NOTES:
1. To avoid metal fatigue, allow for dispersion tube thermal expansion.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
4. Steam valve and strainer sizes are provided by Dri-calc (Note 3).
5. See “Maxi-bank option piping notes” on Pages 38 and 39, and see Pages 14 and 15 for more information about trap types and trap piping.
Assembly and installation

The Mini-bank humidifier is a pre-engineered and pre-assembled header/tube assembly with tubes that are always 3" (76.2 mm) on center. The number of tubes depends upon the duct height. For best mixing, the tubes should span at least 90% (preferably 100%) of the duct width.

1. Unpack shipment and verify receipt of all components with packing list. Two F&T traps and one wye strainer are shipped loose for field installation. Report any shortages at once.

2. The Mini-bank can be configured to discharge steam against or with the airflow: Position the tube bank assembly at the desired orientation, slide the tube bank through the opening in the duct wall, join the tube bank assembly to the separator/valve assembly, and tighten the union.

3. Slightly better mixing with less “fog travel” results when the steam blows against the airflow. If the insulated jacket option has been supplied, the steam must blow with the airflow to avoid steam contacting and condensing on the metal jacket.

4. If a field change is necessary, loosen the union, and rotate the tube bank manifold, and tighten the union.

5. Install the Mini-bank humidifier in the duct, positioning the assembly so the tube bank is perpendicular to the top and bottom of the duct and level across the duct. Support the dispersion tube bank out-board end with a No. 10-32 bolt. To secure the Mini-bank escutcheon plate air tight, seal around the plate and fastener with suitable caulk.

6. Install the steam strainer, taking the steam supply to the Mini-bank humidifier off the top of steam main (instead of the side or bottom) to ensure the driest steam. The main should be dripped and trapped. See “Pressurized steam piping guidelines” on Pages 10–13.

7. Locate and install the steam traps as necessary. The Mini-bank humidifier steam traps should drain by gravity to return main having little or no back pressure. If condensate cannot drain by gravity, it must be elevated to return main (see Page 11).

Continued
Installation

8. Install control tubing (pneumatic) or wiring (electric) to valve actuator.

9. Install an airflow proving switch to prevent the valve from opening unless air is moving in duct. See “Humidifier placement” on Pages 6–8 for location recommendations.

10. Install a duct-mounted high-limit humidistat downstream from the humidifier. Set humidistat at 80-90% RH to prevent condensation forming in the duct. Mount this humidistat far enough downstream to ensure that injected steam has been completely absorbed before the humidistat. See “Humidifier placement” on Pages 6–8 for location recommendations.

11. Install a temperature switch to prevent possible cold-start dripping when steam pressure to the humidifier is cycled. See “Temperature switches” on Pages 16–19 for more information.

12. Install the humidistat and/or sensors according to the recommendations on Page 9.

### Table 46-1: Mini-bank humidifier specifications

<table>
<thead>
<tr>
<th>Face height</th>
<th>Required number of tubes</th>
<th>Face width</th>
<th>Shipping weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9</td>
<td>150-230</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td>250-305</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13-15</td>
<td>330-380</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16-18</td>
<td>405-460</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>19-21</td>
<td>480-535</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>22-24</td>
<td>560-610</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

6" to 48" in 1/2" increments (150 mm to 1220 mm in 13-mm increments)  
For face dimensions larger than 48" × 24" (w × h) (1220 mm × 610 mm), use Multiple-tube humidifier.

**Tubes:** 0.3 lbs per tube foot (0.4 kg per tube meter)  
Remaining components (separator, valve, traps, etc.): 8.5 lbs (3.8 kg)

Note: See Figure 47-1 for face height and face width.
NOTES:
1. To avoid metal fatigue, allow for thermal expansion of dispersion tubes.
2. Dashed lines indicate provided by installer; right-hand discharge shown.
3. Drawing represents a left-hand discharge.
4. Slightly better mixing with less visible vapor travel occurs when discharged steam blows against the airflow, rather than with the airflow. Therefore, **when using noninsulated steam jackets in a horizontal airflow**, position dispersion tubelets (steam orifices) so that they face into the airflow.
   
   If the dispersion tube has an insulated jacket, the discharged steam must blow with the airflow to avoid condensation that may occur when discharged steam contacts the cooler insulated jacket. Therefore, **when using insulated steam jackets in a horizontal airflow**, position dispersion tubelets so that they discharge steam with the airflow, and also add 24" (610 mm) to the non-wetting absorption distance.
5. Center tube assembly within duct height.
6. If steam pressure is less than or equal to 15 psi (103.4 kPa), use float and thermostatic (F&T) traps for the humidifier.
   
   If steam pressure is greater than 15 psi (103.4 kPa), use inverted bucket traps for the humidifier.
   
   If lifting condensate, use an inverted bucket trap and check valve regardless of steam pressure. (see Figure 12-1)
7. See the previous page for face width and face height dimensions.
Installation

**ASSEMBLY AND INSTALLATION**

Area-type humidifiers are factory assembled and shipped as a complete unit, with steam trap and wye strainer shipped loose. Each humidifier requires a steam supply, condensate return, and electrical supplies to operate the fan.

1. Select a location using Table 50-1.
2. Unpack shipment and verify receipt of all Area-type humidifier components with packing slip. Report any shortages at once.
3. Mount humidifier to supported steam and condensate piping as necessary.
4. Connect fan power as recommended for a minimum 60 lbs/hr (27.2 kg/h) of steam: 120v, 60 hz, below 1 amp. The fan will provide 700 cfm (0.33 m³/s) of air.
5. Connect the necessary control signal wiring to steam valve operator.
   **Note:** Recommended maximum steam supply pressure is 15 psi (105 kPa). If pressure is greater than this, consult factory.
6. See components and installation drawing in Figure 39-1.
Field piping

**Figure 49-1: Area-type humidifier components and installation overview**

**Table 49-1: Area-type dispersion fan specifications**

| Electric fan motor | 120 V  
|--------------------|------------------|
|                    | 50/60 Hz  
|                    | 0.75 A  
| Blade diameter | 12" (305 mm)  
| Speeds | 3  
| Control | Rotary switch  

**NOTES:**
1. Dashed lines indicate provided by installer.
2. Dri-calc is DriSteem’s free sizing and selection software; see Dri-calc on the www.dristeem.com Tools page.
3. Steam valve and strainer sizes are provided by Dri-calc (Note 2).
4. See “Piping notes” on Page 23, and see Pages 14 and 15 for more information about trap types and trap piping.
The table below lists the Area-type humidifier's minimum rise, spread and throw non-wetting dimensions. Surfaces cooler than ambient temperature, or objects located within this minimum dimension, may cause condensation and dripping.

Rise: Minimum non-wetting height above the steam chute  
Spread: Minimum non-wetting width from the steam chute  
Throw: Minimum non-wetting horizontal distance from the steam chute  

The greater the space relative humidity, the higher and farther the discharged steam will carry and rise in the space until becoming absorbed.

Table 50-1: Area-type humidifier minimum distances for rise, spread, and throw*

<table>
<thead>
<tr>
<th>Maximum steam capacity</th>
<th>60 °F (16 °C)</th>
<th>70 °F (21 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs/hr</td>
<td>kg/h</td>
<td>ft</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>34</td>
<td>3.0</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>4.0</td>
</tr>
<tr>
<td>150</td>
<td>68</td>
<td>6.0</td>
</tr>
<tr>
<td>200</td>
<td>90</td>
<td>7.0</td>
</tr>
<tr>
<td>225</td>
<td>102</td>
<td>7.0</td>
</tr>
<tr>
<td>250</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td>285</td>
<td>130</td>
<td>9.0</td>
</tr>
<tr>
<td>300</td>
<td>142</td>
<td>9.5</td>
</tr>
<tr>
<td>325</td>
<td>154</td>
<td>10.0</td>
</tr>
</tbody>
</table>

* With fan on high speed
Humidifier start-up and shut-down

HUMIDIFIER START-UP
1. Open steam jacketing shut-off valve, if applicable.
2. Inspect steam valve for proper operation.
   Pneumatic: Inspect to ensure that: (1) the valve closes off steam tight, (2) the stem packing is not leaking steam, and (3) the diaphragm in the actuator is not leaking air.
   Electric: Inspect to be sure the valve operates freely, closes off steam tightly, and that the stem packing is not leaking.
3. Inspect steam traps and verify all are working properly.
   A blocked steam trap will be cold. A “blowing” steam trap will be hot and noisy, and the discharge pipe will be hot for a continuous distance up to 30’ (9 m). A properly operating steam trap will have about a two-degree temperature drop measured across the trap from inlet to discharge.
4. Verify airflow proving switch and high limit humidistat, if applicable, are working properly.

HUMIDIFIER SHUT-DOWN
Close humidifier steam supply shut-off valve.

See “Maintenance procedures” on Page 54.
Eliminating excess heat from steam jacketed humidifiers

FIGURE 52-1: SINGLE HUMIDIFYING STEAM PATH
Eliminating excess heat from steam jacketed humidifiers

See Figure 52-1.

In some applications with steam-jacketed humidifiers, the heat given off by the steam-heated tube (not the steam sensible heat) may be undesirable. While relatively insignificant in a single-tube unit (usually a rise of less than 2 °F [1 °C]), it can be much greater in a closely-spaced, multiple-tube installation. This can be dealt with in several ways:

1. Manually turn off the steam supply valve after the humidification season.
2. Insulate the tube exterior.
   Note: Insulation will enlarge the tube profile, causing additional resistance to airflow.
3. Provide an automatic shut-off valve for the jacketing steam circuit in addition to the modulating control valve. This will eliminate heat gain during the “off” humidification periods only. The jacketing steam valve should be a two-position type, with a minimum Cv of 5, and set to the full-open position prior to opening the modulating valve.

As shown in Figure 52-1, all steam (for jacketing and humidification) must pass through the jacket steam valve. It must do so with little or no pressure drop across the valve, or maximum capacity will be reduced. More importantly, with just one supply source for jacket and humidification steam, the jacket steam temperature may drop below the temperature required to eliminate dripping. Therefore, the valve must be amply sized. This is not significant in a small-capacity humidifier. In a large-capacity humidifier, the required valve size may be quite expensive.
MAINTENANCE

Maintenance procedures

1. Strainer: Inspect the screen at least twice during the first year. If fouled, it should be inspected more frequently and cleaned as needed.

2. Steam trap: At least twice a year, verify that the steam trap is functioning properly. A blocked steam trap will be cold. An improperly operating steam trap with steam exiting the trap will be hot and noisy, and the discharge pipe from it will be hot for a continuous distance up to 30' (9 m). A properly operating steam trap will have about a 2 °F (1 °C) temperature drop measured across the trap from inlet to discharge.

3. Valve (pneumatic): Inspect annually to ensure that:
   a. The valve tightly closes off steam.
   b. The stem packing is not leaking steam.
   c. The diaphragm in the actuator is not leaking air.

   Valve (electric modulating): Inspect annually to ensure that:
   a. The valve operates freely.
   b. The valve tightly closes off steam.
   c. The stem packing is not leaking steam.

   Valve (solenoid): Inspect annually to verify proper function with steam-tight shutoff.

4. Silencer: Inspect at least annually for cleanliness. Clean or replace as needed.

5. Teflon seal rings: After one year of service, verify that rings are properly functioning. They require replacement if disturbed, since the Teflon can take a “set” and not return to its uncompressed shape.

6. O-rings (dispersion tube adapters): Replace after two or three years of service.

7. Separator: No maintenance required.

8. Dispersion tube: No maintenance required.
## Troubleshooting

### Table 55-1: Steam Injection troubleshooting guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidifier discharges water in duct</td>
<td>• Steam main overloaded with water due to boiler discharging water with steam (priming) or improper steam main dripping</td>
<td>• Locate cause of priming and correct</td>
</tr>
<tr>
<td></td>
<td>• Steam trap not draining properly</td>
<td>• Replace trap, repair, or clean as required</td>
</tr>
<tr>
<td></td>
<td>• Steam pressure is too low (below 2 psi [14 kPa])</td>
<td>• Reduce back pressure of condensate return line</td>
</tr>
<tr>
<td></td>
<td>• Condensate is collecting in low, undripped points in steam main</td>
<td>• Verify that steam shutoff valves are fully open</td>
</tr>
<tr>
<td></td>
<td>• Steam jacketing of tube not up to proper temperature</td>
<td>• Adjust pressure reducing valve</td>
</tr>
<tr>
<td></td>
<td>• Overloaded condensate return main</td>
<td>• Adjust boiler pressure</td>
</tr>
<tr>
<td></td>
<td>• Condensate is collecting in low, undripped points in steam main</td>
<td>• Condensate return line pressure is too high. Re-pipe.</td>
</tr>
<tr>
<td>Humidifier leaks water</td>
<td>• Defective O-rings on tube adapter</td>
<td>• Install drips and steam traps as required</td>
</tr>
<tr>
<td></td>
<td>• Steam leak in outer jacket of dispersion tube</td>
<td>• Replace with larger piping, or pipe condensate to floor drain.</td>
</tr>
<tr>
<td>Humidity exceeds setting of humidistat</td>
<td>• Automatic valve not fully closing</td>
<td>• Replace steam trap orifices as necessary.</td>
</tr>
<tr>
<td></td>
<td>• Control system is malfunctioning</td>
<td>• Replace with larger trap.</td>
</tr>
<tr>
<td></td>
<td>• Leak in steam piping inside duct</td>
<td></td>
</tr>
</tbody>
</table>

Continued
## Troubleshooting

### Table 55-1:
Steam Injection troubleshooting guide (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunting: Humidity swings above and below desired set point</td>
<td>- Control system is malfunctioning.</td>
<td>- Faulty or inaccurate humidity controller. Calibrate or replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Poor location of control components. Relocate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Incompatible control component(s). Change component(s).</td>
</tr>
<tr>
<td></td>
<td>- Automatic valve is hunting.</td>
<td>- Humidifier is oversized. Change to a smaller valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pressure-reducing valve is not accurately controlling steam pressure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Boiler pressure is swinging too widely. Adjust.</td>
</tr>
<tr>
<td>Space humidity will not rise to humidistat set point</td>
<td>- Excessive outside air volume</td>
<td>- Check fans, dampers, VAV, etc.</td>
</tr>
<tr>
<td></td>
<td>- Steam pressure is too low.</td>
<td>- Manual steam valve is partially closed. Open.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Strainer screen is partially clogged. Clean.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Boiler pressure is too low. Adjust.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pressure reducing valve is not accurately controlling steam pressure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Boiler pressure is swinging too widely. Adjust.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check fans, dampers, VAV, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Piped incorrectly. Re-pipe.</td>
</tr>
<tr>
<td></td>
<td>- Humidifier is undersized.</td>
<td>- Replace valve with larger capacity valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Replace with larger humidifier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Add additional humidifier.</td>
</tr>
<tr>
<td></td>
<td>- Automatic steam valve is not opening fully.</td>
<td>- Valve packing is adjusted too tightly. Loosen and/or replace packing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Adjust valve linkage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check pilot positioner settings.</td>
</tr>
<tr>
<td></td>
<td>- Control system is malfunctioning.</td>
<td>Electric:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Incorrect control circuit voltage. Change transformer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Incorrect control signal. Replace component(s) to make all components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compatible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Improperly wired. Rewire.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Incorrect humidity sensor (Barber-Colman units only). Replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Humidity controller is out of calibration or is malfunctioning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Malfunctioning humidifier temperature switch is not allowing humidifier valve to open. Replace or readjust.</td>
</tr>
<tr>
<td></td>
<td>- Compressed air pressure is too low. Adjust.</td>
<td>Pneumatic:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Humidity controller is out of calibration or is malfunctioning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Obstructed air line. Clean.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Malfunctioning pneumatic temperature switch. Replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Air leak in actuator. Repair or replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Compressed air pressure is too low. Adjust.</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space humidity will not rise to humidistat set point (continued)</td>
<td>• Foreign matter is preventing valve from opening. • Excessive outside air volume.</td>
<td>• Clean or replace valve. • Reduce air volume.</td>
</tr>
<tr>
<td>Condensate in duct</td>
<td>• Humidifier is mounted too close to internal devices (dampers, turning vanes, etc.) in duct. • A noninsulated duct is passing through an unheated area (duct surface temperature is too low).</td>
<td>• Check fan, dampers, VAV, etc. • Move humidifier tubes to a point farther upstream from internal devices. • Add dispersion tubes for shorter absorption distance. consult DriSteem to determine the total number of tubes required. • Insulate ductwork. • Humidifier is operating when blower is off. Install airflow proving switch. • Valve is hunting. See previous page for instructions. • Air temperature in duct is too low for steam quantity being supplied. • Air cfm in duct is too low for steam quantity being supplied. • Steam pressure is too high, causing excess capacity.</td>
</tr>
<tr>
<td>Humidifier is noisy</td>
<td>• Tube silencer is missing.</td>
<td>• Install silencer. Note: Unless special-ordered, silencers are furnished only with Model 60 and Model 70 tubes equal to or shorter than 48” (1219 mm), and only with black iron piping. • Dispersion tube output is excessively high.</td>
</tr>
</tbody>
</table>
Single-tube and Multiple-tube humidifiers

**FIGURE 58-1: SINGLE-TUBE AND MULTIPLE-TUBE HUMIDIFIER REPLACEMENT PARTS**
### Table 59-1: Single-tube and Multiple-tube humidifier replacement parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Separator (vertical separator shown)</td>
<td>Consult factory</td>
</tr>
<tr>
<td>2</td>
<td>Valve/actuator assembly [refer to specific order]; Valve body alone is not available as replacement part.</td>
<td>Consult factory</td>
</tr>
<tr>
<td>3</td>
<td>Actuator</td>
<td>Consult factory</td>
</tr>
<tr>
<td>4</td>
<td>Tube adapter</td>
<td>Consult factory</td>
</tr>
<tr>
<td>5</td>
<td>O-ring, 1&quot; I.D., black EPDM, for Model 60 and Model 70 tubes (not shown)</td>
<td>300400-007</td>
</tr>
<tr>
<td></td>
<td>O-ring, 1½&quot; I.D., black EPDM, for Model 80 tubes (not shown)</td>
<td>300400-006</td>
</tr>
<tr>
<td>6</td>
<td>Silencer holder, stainless steel (not shown)</td>
<td>183100</td>
</tr>
<tr>
<td>7</td>
<td>Medium grit stainless steel wool (not shown)</td>
<td>300210</td>
</tr>
<tr>
<td>8</td>
<td>Replacement tube</td>
<td>Consult factory</td>
</tr>
<tr>
<td>9</td>
<td>Seal ring, brass, 1/2&quot; (DN15), for Model 60 tube</td>
<td>306360-001</td>
</tr>
<tr>
<td></td>
<td>Seal ring, brass, 3/4&quot; (DN20), for Model 70 tube</td>
<td>306360-002</td>
</tr>
<tr>
<td></td>
<td>Seal ring, brass, 1½&quot; (DN40), for Model 80 tube</td>
<td>306360-003</td>
</tr>
<tr>
<td></td>
<td>Seal ring, 316 stainless steel, 1/2&quot; (DN15), for Model 60 tube</td>
<td>306360-007</td>
</tr>
<tr>
<td></td>
<td>Seal ring, 316 stainless steel, 3/4&quot; (DN20), for Model 70 tube</td>
<td>306360-004</td>
</tr>
<tr>
<td></td>
<td>Seal ring, 316 stainless steel, 1½&quot; (DN40), for Model 80 tube</td>
<td>306360-006</td>
</tr>
<tr>
<td>10</td>
<td>Nipple</td>
<td>Consult factory</td>
</tr>
<tr>
<td>11</td>
<td>Elbow</td>
<td>Consult factory</td>
</tr>
<tr>
<td>12</td>
<td>Union</td>
<td>Consult factory</td>
</tr>
<tr>
<td>13</td>
<td>Tubelet</td>
<td>Consult factory</td>
</tr>
<tr>
<td>14</td>
<td>Y-strainer</td>
<td>Consult factory</td>
</tr>
<tr>
<td>15</td>
<td>Steam trap, float and thermostatic (F&amp;T) (shown), cast iron, 3/4&quot; (DN20), for ≤15 psi (103.4 kPa)</td>
<td>300000-DB</td>
</tr>
<tr>
<td></td>
<td>Steam trap, inverted bucket, cast iron, 3/4&quot; (DN20), for &gt;15 psi (103.4 kPa) or lifting condensate</td>
<td>300010</td>
</tr>
<tr>
<td></td>
<td>Steam trap, thermostatic, 316 stainless steel, 3/4&quot; (DN20)</td>
<td>300025</td>
</tr>
<tr>
<td>16</td>
<td>Temperature switch, electric</td>
<td>400260-001</td>
</tr>
<tr>
<td></td>
<td>Temperature switch, pneumatic</td>
<td>307076</td>
</tr>
</tbody>
</table>
## Table 60-1: Area-type humidifier with electric fan replacement parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Separator (with 3/4&quot; NPT [DN20] supply)</td>
<td>Consult factory</td>
</tr>
<tr>
<td>2</td>
<td>Fan, three-speed</td>
<td>400010</td>
</tr>
<tr>
<td>3</td>
<td>Valve actuator</td>
<td>Consult factory</td>
</tr>
<tr>
<td>4</td>
<td>Valve, 1/2&quot; NPT (DN15) pneumatic with operator</td>
<td>510060</td>
</tr>
<tr>
<td></td>
<td>Valve, 3/4&quot; NPT (DN20) pneumatic with operator</td>
<td>510061</td>
</tr>
<tr>
<td></td>
<td>Valve, 1&quot; NPT (DN25) pneumatic with operator</td>
<td>510063</td>
</tr>
<tr>
<td></td>
<td>Valve, 1/2&quot; NPT (DN15) electric</td>
<td>510030</td>
</tr>
<tr>
<td></td>
<td>Valve, 3/4&quot; NPT (DN20) electric</td>
<td>510031</td>
</tr>
<tr>
<td></td>
<td>Valve, 1&quot; NPT (DN25) electric</td>
<td>510032</td>
</tr>
</tbody>
</table>

### Figure 60-1: Area-type humidifier with electric fan

![Area-type humidifier with electric fan](image-url)
Table 61-1:
Mini-bank humidifier replacement parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5&quot; (127 mm) separator</td>
<td>162520</td>
</tr>
<tr>
<td>2</td>
<td>Valve, 1/2&quot; (DN15) pneumatic with operator</td>
<td>510060</td>
</tr>
<tr>
<td></td>
<td>Valve, 1/2&quot; (DN15) electric</td>
<td>510030</td>
</tr>
<tr>
<td>3</td>
<td>Orifice, brass (not shown)*</td>
<td>203450</td>
</tr>
<tr>
<td>4</td>
<td>Trap, float and thermostatic (F&amp;T) (not shown)**</td>
<td>300000</td>
</tr>
<tr>
<td>5</td>
<td>Y-strainer, 1/2&quot; (DN15) (not shown)**</td>
<td>300100-001</td>
</tr>
<tr>
<td>6</td>
<td>Valve actuator</td>
<td>Consult factory</td>
</tr>
</tbody>
</table>

NOTES:
* Varies with each order
** Shipped loose
Two-year Limited Warranty

DRI-STEEM Corporation ("DriSteem") warrants to the original user that its products will be free from defects in materials and workmanship for a period of two (2) years after installation or twenty-seven (27) months from the date DriSteem ships such product, whichever date is the earlier.

If any DriSteem product is found to be defective in material or workmanship during the applicable warranty period, DriSteem’s entire liability, and the purchaser’s sole and exclusive remedy, shall be the repair or replacement of the defective product, or the refund of the purchase price, at DriSteem’s election. DriSteem shall not be liable for any costs or expenses, whether direct or indirect, associated with the installation, removal or reinstallation of any defective product. The Limited Warranty does not include cylinder replacement for electrode steam humidifiers.

DriSteem’s Limited Warranty shall not be effective or actionable unless there is compliance with all installation and operating instructions furnished by DriSteem, or if the products have been modified or altered without the written consent of DriSteem, or if such products have been subject to accident, misuse, mishandling, tampering, negligence or improper maintenance. Any warranty claim must be submitted to DriSteem in writing within the stated warranty period. Defective parts may be required to be returned to DriSteem.

DriSteem’s Limited Warranty is made in lieu of, and DriSteem disclaims all other warranties, whether express or implied, including but not limited to ANY IMPLIED WARRANTY OF MERCHANTABILITY, ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, any implied warranty arising out of a course of dealing or of performance, custom or usage of trade.

DriSteem SHALL NOT, UNDER ANY CIRCUMSTANCES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS, REVENUE OR BUSINESS) OR DAMAGE OR INJURY TO PERSONS OR PROPERTY IN ANY WAY RELATED TO THE MANUFACTURE OR THE USE OF ITS PRODUCTS. The exclusion applies regardless of whether such damages are sought based on breach of warranty, breach of contract, negligence, strict liability in tort, or any other legal theory, even if DriSteem has notice of the possibility of such damages.

By purchasing DriSteem’s products, the purchaser agrees to the terms and conditions of this Limited Warranty.

Extended warranty

The original user may extend the term of the DriSteem Limited Warranty for a limited number of months past the initial applicable warranty period and term provided in the first paragraph of this Limited Warranty. All the terms and conditions of the Limited Warranty during the initial applicable warranty period and term shall apply during any extended term. An extended warranty term of an additional twelve (12) months or twenty four (24) months of coverage may be purchased. The extended warranty term may be purchased until eighteen (18) months after the product is shipped, after which time no extended warranties are available.

Any extension of the Limited Warranty under this program must be in writing, signed by DriSteem, and paid for in full by the purchaser.

mc_051308_0630